On non-prolongable Riemann surfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-abelian vortices on compact Riemann surfaces

We consider the vortex equations for a U(n) gauge field A coupled to a Higgs field φ with values on the n × n matrices. It is known that when these equations are defined on a compact Riemann surface Σ, their moduli space of solutions is closely related to a moduli space of τ -stable holomorphic n-pairs on that surface. Using this fact and a local factorization result for the matrix φ, we show t...

متن کامل

Computing on Riemann Surfaces

These notes are a review on computational methods that allow us to use computers as a tool in the research of Riemann surfaces, algebraic curves and Jacobian varieties. It is well known that compact Riemann surfaces, projective algebraiccurves and Jacobian varieties are only diierent views to the same object, i.e., these categories are equivalent. We want to be able to put our hands on this equ...

متن کامل

Coalescence on Riemann Surfaces

We consider coalescing fermions on a Riemann Surface and derive generalized determinant formulas, complementing some results of 3].

متن کامل

Non - Abelian Vortices on Riemann Surfaces : an Integrable Case ∗

We consider U(n+1) Yang-Mills instantons on the space Σ×S2, where Σ is a compact Riemann surface of genus g. Using an SU(2)-equivariant dimensional reduction, we show that the U(n+1) instanton equations on Σ× S are equivalent to non-Abelian vortex equations on Σ. Solutions to these equations are given by pairs (A, φ), where A is a gauge potential of the group U(n) and φ is a Higgs field in the ...

متن کامل

On the Length Spectrums of Non-compact Riemann Surfaces

In this paper we prove that the length spectrum metric is topologically equivalent to the Teichmüller metric in Teichmüller space T (g,m, n) . This result solved a problem suggested by Sorvali [9] in 1972.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1943

ISSN: 0386-2194

DOI: 10.3792/pia/1195573361